
7-1

Chapter 7

SQL – Data Definition

7-2

Chapter 7 - Objectives

Data types supported by SQL standard.

Purpose of integrity enhancement feature of
SQL.

How to define integrity constraints using SQL.

How to use the integrity enhancement feature
in the CREATE and ALTER TABLE statements.

7-3

Chapter 7 - Objectives

Purpose of views.

How to create and delete views using SQL.

How the DBMS performs operations on
views.

Under what conditions views are updatable.

Advantages and disadvantages of views.

How the ISO transaction model works.

How to use the GRANT and REVOKE
statements as a level of security.

7-4

SQL Identifiers

Used to identify objects in the database, such
as table names, view names, and columns

Consists of the uppercase letters A . . . Z, the
lowercase letters a . . . z, the digits 0 . . . 9, and
the underscore (_) character

Can be no longer than 128 characters.

Must start with a letter

Cannot contain spaces

7-5

SQL Scalar Data Types
ISO SQL data types:

+ BIT and BIT VARYING have been removed from the SQL:2003 standard.

7-6

SQL Scalar Data Types

Boolean data
consists of the truth values TRUE and FALSE

Character data
branchNo CHAR(4) (fixed length of 4 chars)

address VARCHAR(30) (up to max. 30 chars)

Bit data
Defining bit strings

Format similar to that of character data type

E.g. bitString BIT(4)

7-7

SQL Scalar Data Types

Exact numeric data
Define numbers with an exact representation

Consists of a precision and a scale

E.g. rooms SMALLINT (-32,768 ~ 32767)

E.g. salary DECIMAL(7,2) (7 sig. digits, 2 dec. places)

Approximate numeric data
Define numbers without an exact representation

Notation is similar to scientific notation

E.g. 10E3, +5.2E6, −0.2E–4

7-8

SQL Scalar Data Types

Datetime data
Define points in time

DATE stores the YEAR, MONTH, and DAY fields

TIME stores the HOUR, MINUTE, and SECOND fields

TIMESTAMP is used to store date and times

E.g. viewDate DATE

Interval data
Used to represent periods of time

Consists of a contiguous subset of the fields: YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND.

7-9

SQL Scalar Data Types

Large objects
A data type that holds a large amount of data, such
as a long text file or a graphics file. Three different
kinds of large object types are defined in SQL:

Binary Large Object (BLOB) is a binary string that
does not have a character set or collation association

Character Large Object (CLOB) and National
Character Large Object (NCLOB), both character
strings.

7-10

Integrity Enhancement Feature

Consists of constraints we wish to impose to
protect the database from becoming
inconsistent.

Consider five types of integrity constraints:
required data

domain constraints

entity integrity

referential integrity

general constraints.

7-11

Integrity Enhancement Feature

Required Data
position VARCHAR(10) NOT NULL

(every member of staff must have a job position)

Domain Constraints
(a) CHECK

sex CHAR NOT NULL CHECK (sex IN (‘M’, ‘F’))

(The sex of a member of staff is either ‘M’ or ‘F’)

7-12

Integrity Enhancement Feature

(b) CREATE DOMAIN
CREATE DOMAIN DomainName [AS] dataType

[DEFAULT defaultOption]

[CHECK (searchCondition)]

For example:

CREATE DOMAIN SexType AS CHAR

DEFAULT ‘M’

CHECK (VALUE IN (‘M’, ‘F’));

sex SexType NOT NULL

7-13

Integrity Enhancement Feature

searchCondition can involve a table lookup:

CREATE DOMAIN BranchNo AS CHAR(4)

CHECK (VALUE IN (SELECT branchNo

FROM Branch));

Domains can be removed using DROP DOMAIN:

DROP DOMAIN DomainName [RESTRICT | CASCADE]

RESTRICT: Refuse to drop the domain if there are any
dependent objects. This is the default.

CASCADE: Automatically drop objects that depend on
the domain (such as table columns).

7-14

Entity Integrity

Primary key of a table must contain a unique,
non-null value for each row.

ISO standard supports PRIMARY KEY clause
in CREATE and ALTER TABLE statements:

PRIMARY KEY(staffNo)

PRIMARY KEY(clientNo, propertyNo)

Can only have one PRIMARY KEY clause per
table. Can still ensure uniqueness for
alternate keys using UNIQUE:

UNIQUE(telNo)

7-15

Referential Integrity

FK is column or set of columns that links each
row in child table containing foreign FK to row
of parent table containing matching PK.

Referential integrity means that, if the FK
contains a value, that value must refer to an
existing, valid row in the parent table.

ISO standard supports definition of FKs with
FOREIGN KEY clause in CREATE and ALTER
TABLE statements:

FOREIGN KEY(branchNo) REFERENCES Branch

(Define branchNo in PropertyForRent table)

7-16

Referential Integrity

Any INSERT/UPDATE attempting to create FK
value in child table without matching PK value
in parent is rejected.

Action taken attempting to update/delete a
PK value in parent table with matching rows
in child is dependent on referential action
specified using ON UPDATE and ON DELETE
subclauses:

CASCADE

SET NULL

SET DEFAULT

NO ACTION

7-17

Referential Integrity

CASCADE: Delete row from parent and delete
matching rows in child, and so on in cascading
manner.

SET NULL: Delete row from parent and set FK
column(s) in child to NULL. Only valid if FK
columns are not specified as NOT NULL.

SET DEFAULT: Delete row from parent and set
each component of FK in child to specified
default. Only valid if DEFAULT specified for FK
columns.

NO ACTION: Reject delete from parent. Default.

7-18

Referential Integrity

FOREIGN KEY (staffNo) REFERENCES Staff
ON DELETE SET NULL

(If a staff record is deleted from the Staff table, the
values of the corresponding staffNo column in the
PropertyForRent table are set to NULL.)

FOREIGN KEY (ownerNo) REFERENCES Owner
ON UPDATE CASCADE

(If an owner number is updated in the PrivateOwner
table, the corresponding column(s) in the
PropertyForRent table are set to the new value.)

7-19

General Constraints

Updates to tables may be constrained by
enterprise rules governing the real-world
transactions

Can use CHECK and UNIQUE clauses in CREATE
and ALTER TABLE statements

Can also use:

CREATE ASSERTION AssertionName

CHECK (searchCondition)

7-20

General Constraints

DreamHome may have a rule that prevents a
member of staff from managing more than
100 properties at the same time.

CREATE ASSERTION StaffNotHandlingTooMuch

CHECK (NOT EXISTS (SELECT staffNo

FROM PropertyForRent

GROUP BY staffNo

HAVING COUNT(*) > 100))

7-21

Data Definition

SQL DDL allows database objects such as
schemas, domains, tables, views, and indexes
to be created and destroyed.

Main SQLDDL statements are:

CREATE SCHEMA DROP SCHEMA

CREATE/ALTER DOMAIN DROPDOMAIN

CREATE/ALTER TABLE DROPTABLE

CREATE VIEW DROPVIEW

Many DBMSs also provide:

CREATE INDEX DROP INDEX

7-22

Data Definition

Relations and other database objects exist in
an environment.

Each environment contains one or more
catalogs, and each catalog consists of a set of
schemas.

A schema is a named collection of related
database objects.

Objects in a schema can be tables, views,
domains, assertions, collations, translations,
and character sets. All have same owner.

7-23

CREATE SCHEMA

CREATE SCHEMA Name
[AUTHORIZATION CreatorId]

• For example:

CREATE SCHEMA DreamHome AUTHORIZATION DZhu

7-24

DROP SCHEMA

DROP SCHEMA Name [RESTRICT | CASCADE]

• With RESTRICT (default), schema must be
empty, or operation fails.

• With CASCADE, operation cascades to drop
all objects associated with schema in the
order defined previously. If any of these
operations fail, DROP SCHEMA fails.

7-25

CREATE TABLE
After creating the database structure, we can create
the table structures:

CREATE TABLE TableName

{(colName dataType [NOT NULL] [UNIQUE]

[DEFAULT defaultOption]

[CHECK searchCondition] [,...]}

[PRIMARY KEY (listOfColumns),]

{[UNIQUE (listOfColumns),] […,]}

{[FOREIGN KEY (listOfFKColumns)

REFERENCES ParentTableName [(listOfCKColumns)]

[MATCH {PARTIAL | FULL}

[ON UPDATE referentialAction]

[ON DELETE referentialAction]] [,…]}

{[CHECK (searchCondition)] [,…] })

7-26

CREATE TABLE

Creates a table called TableName with one or
more columns of the specified dataType.

With NOT NULL, system rejects any attempt to
insert a null in the column.

Can specify a DEFAULT value for the column.

Primary keys should always be specified as
NOT NULL.

FOREIGN KEY clause specifies FK along with
the referential action.

7-27

Example 7.1 - CREATE TABLE

To be continued…

7-28

Example 7.1 - CREATE TABLE

To be continued …

7-29

Example 7.1 - CREATE TABLE

7-30

ALTER TABLE

It changes the structure of a table once it has
been created. It consists of six options to:

Add a new column to a table.

Drop a column from a table.

Add a new table constraint.

Drop a table constraint.

Set a default for a column.

Drop a default for a column.

7-31

ALTER TABLE Statement Format

ALTER TABLE tableName

[ADD [COLUMN] columnName dataType [NOT NULL]
[UNIQUE]

[DEFAULT defaultOption] [CHECK (searchCondition)]]

[DROP [COLUMN] columnName [RESTRICT | CASCADE]]

[ADD [CONSTRAINT [constraintName]]
tableConstraintDefinition]

[DROP CONSTRAINT constraintName [RESTRICT |
CASCADE]]

[ALTER [COLUMN] SET DEFAULT defaultOption]

[ALTER [COLUMN] DROP DEFAULT]

7-32

Example 7.2(a) - ALTER TABLE

Change Staff table by removing default of
‘Assistant’ for position column and setting
default for sex column to female (‘F’).

 ALTER TABLE Staff

 ALTER position DROP DEFAULT;

 ALTER TABLE Staff

 ALTER sex SET DEFAULT ‘F’;

7-33

Example 7.2(b) - ALTER TABLE

Remove constraint from PropertyForRent that
staff are not allowed to handle more than 100
properties at a time. Add new column to
Client table.

 ALTER TABLE PropertyForRent

 DROP CONSTRAINT StaffNotHandlingTooMuch;

 ALTER TABLE Client

 ADD prefNoRooms PRooms;

7-34

DROP TABLE

DROP TABLE TableName [RESTRICT | CASCADE]

 e.g. DROP TABLE PropertyForRent;

Removes named table and all rows within it.

With RESTRICT, if any other objects depend for
their existence on continued existence of this
table, SQL does not allow request.

With CASCADE, SQL drops all dependent
objects (and objects dependent on these
objects).

7-35

Views

View
 Dynamic result of one or more relational

operations operating on base relations to
produce another relation.

• Virtual relation that does not necessarily
actually exist in the database but is produced
upon request, at time of request.

7-36

Views

Contents of a view are defined as a query on
one or more base relations. The DBMS stores
the definition of the view in the database.

There are two approaches to view referencing.

With view resolution, any operation on view is
automatically translated into the defined
query operations on the base relations from
which it is derived.

With view materialization, the view is stored
as a temporary table, which is maintained as
the underlying base tables are updated.

7-37

SQL - CREATE VIEW

CREATE VIEW ViewName [(newColumnName [,...])]

AS subselect

[WITH [CASCADED | LOCAL] CHECK OPTION]

• Can assign a name to each column in view.

• If list of column names is specified, it must
have same number of items as number of
columns produced by subselect.

• If omitted, each column takes name of
corresponding column in subselect.

7-38

SQL - CREATE VIEW

List must be specified if there is any ambiguity
in a column name.

The subselect is known as the defining query.

WITH CHECK OPTION ensures that if a row
fails to satisfy WHERE clause of defining
query, it is not added to underlying base
table.

Need SELECT privilege on all tables referenced
in subselect and USAGE privilege on any
domains used in referenced columns.

7-39

Example 7.3 - Create Horizontal View

A horizontal view restricts a user’s access to selected
rows of one or more tables.

Create a view so that manager at branch B003 can only
see details for staff working in his or her branch office.

 CREATE VIEW Manager3Staff
 AS SELECT *
 FROM Staff
 WHERE branchNo = ‘B003’;

7-40

Example 7.4 - Create Vertical View

A vertical view restricts a user’s access to selected
columns of one or more tables.

 Create view of staff details at branch B003 excluding
salaries.

 CREATE VIEW Staff3

 AS SELECT staffNo, fName, lName, position, sex

 FROM Staff

 WHERE branchNo = ‘B003’;

7-41

Example 7.5 - Grouped and Joined Views

Create a view of staff who manage properties
for rent, including branch number they work
at, staff number, and number of properties
they manage.

 CREATE VIEW StaffPropCnt (branchNo, staffNo, cnt)

AS SELECT s.branchNo, s.staffNo, COUNT(*)

 FROM Staff s, PropertyForRent p

 WHERE s.staffNo = p.staffNo

 GROUP BY s.branchNo, s.staffNo;

7-42

Example 7.3 - Grouped and Joined Views

Data for view StaffPropCnt:

7-43

SQL - DROP VIEW

Statement Format:

 DROP VIEW ViewName [RESTRICT | CASCADE]

Causes definition of view to be deleted from
database.

For example:

 DROP VIEW Manager3Staff;

7-44

SQL - DROP VIEW

With CASCADE, all related dependent objects
are deleted; i.e. any views defined on view
being dropped.

With RESTRICT (default), if any other objects
depend for their existence on continued
existence of the view being dropped,
command is rejected.

7-45

View Resolution

Count number of properties managed by each
member at branch B003.

SELECT staffNo, cnt

FROM StaffPropCnt

WHERE branchNo = ‘B003’

ORDER BY staffNo;

7-46

View Resolution

(a) View column names in SELECT list are
translated into their corresponding column
names in the defining query:

SELECT s.staffNo As staffNo, COUNT(*) As cnt

(b) View names in FROM are replaced with
corresponding FROM lists of defining query:

FROM Staff s, PropertyForRent p

7-47

(c) WHERE from user query is combined with
WHERE of defining query using AND:

WHERE s.staffNo = p.staffNo AND branchNo = ‘B003’

(d) GROUP BY and HAVING clauses copied from
defining query:

 GROUP BY s.branchNo, s.staffNo

(e) ORDER BY copied from query with view column
name translated into defining query column
name

 ORDER BY s.staffNo

View Resolution

7-48

(f) Final merged query is now executed to
produce the result:

SELECT s.staffNo AS staffNo, COUNT(*) AS cnt

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo AND

 branchNo = ‘B003’

GROUP BY s.branchNo, s.staffNo

ORDER BY s.staffNo;

View Resolution

7-49

Restrictions on Views

SQL imposes several restrictions on creation
and use of views.

(a) If column in view is based on an aggregate
function:

Column may appear only in SELECT and ORDER BY
clauses of queries that access view.

Column may not be used in WHERE nor be an
argument to an aggregate function in any query
based on view.

7-50

Restrictions on Views

For example, following query would fail:

 SELECT COUNT(cnt)

 FROM StaffPropCnt;

Similarly, following query would also fail:

 SELECT *

 FROM StaffPropCnt

 WHERE cnt > 2;

7-51

Restrictions on Views

(b) Grouped view may never be joined with a
base table or a view.

For example, StaffPropCnt view is a grouped
view, so any attempt to join this view with
another table or view fails.

7-52

View Updatability

All updates to a base table are immediately
reflected in all views that encompass that
base table.

Similarly, may expect that if view is updated
then base table(s) will reflect change.

7-53

View Updatability

However, consider again view StaffPropCnt.

If we tried to insert record showing that at
branch B003, SG5 manages 2 properties:

 INSERT INTO StaffPropCnt

 VALUES (‘B003’, ‘SG5’, 2);

• Have to insert 2 records into PropertyForRent
showing which properties SG5 manages.
However, we do not know which properties
they are; i.e. do not know primary keys!

7-54

View Updatability

If change definition of view and replace count
with actual property numbers:

CREATE VIEW StaffPropList (branchNo,

 staffNo, propertyNo)

AS SELECT s.branchNo, s.staffNo, p.propertyNo

 FROM Staff s, PropertyForRent p

 WHERE s.staffNo = p.staffNo;

7-55

View Updatability

Now try to insert the record:

 INSERT INTO StaffPropList

 VALUES (‘B003’, ‘SG5’, ‘PG19’);

• Still problem, because in PropertyForRent all
columns except postcode/staffNo are not
allowed nulls.

• However, have no way of giving remaining
non-null columns values.

7-56

View Updatability

ISO specifies that a view is updatable if and
only if:

 - DISTINCT is not specified.

 - Every element in SELECT list of defining query is a column
name and no column appears more than once.

 - FROM clause specifies only one table, excluding any
views based on a join, union, intersection or difference.

 - WHERE clause doesn’t include nested SELECTs referencing
the table in the FROM clause.

 - No GROUP BY or HAVING clause in the defining query .

 - Also, every row added through view must not violate
integrity constraints of base table.

7-57

WITH CHECK OPTION

Rows exist in a view because they satisfy
WHERE condition of defining query.

If a row changes and no longer satisfies
condition, it disappears from the view.

New rows appear within view when
insert/update on view cause them to satisfy
WHERE condition.

Rows that enter or leave a view are called
migrating rows.

WITH CHECK OPTION prohibits a row
migrating out of the view.

7-58

WITH CHECK OPTION

LOCAL/CASCADED apply to view hierarchies.

With LOCAL, any row insert/update on this
view and any view directly or indirectly defined
on this view must not cause row to disappear
from the view unless row also disappears from
underlying derived view/table.

With CASCADED (default), any row insert/
update on this view and on any view directly or
indirectly defined on this view must not cause
row to disappear from the view.

7-59

Example 7.6 - WITH CHECK OPTION

CREATE VIEW Manager3Staff

 AS SELECT *

 FROM Staff

 WHERE branchNo = ‘B003’

 WITH CHECK OPTION;

Cannot update branch number of a row from
B003 to B002 as this would cause the row to
migrate from view.

Also cannot insert a row into view with a
branch number that does not equal B003.

7-60

Example 7.6 - WITH CHECK OPTION

Now consider the following:

 CREATE VIEW LowSalary

AS SELECT * FROM Staff WHERE salary > 9000;

 CREATE VIEW HighSalary

AS SELECT * FROM LowSalary

 WHERE salary > 10000

WITH LOCAL CHECK OPTION;

 CREATE VIEW Manager3Staff

AS SELECT * FROM HighSalary

 WHERE branchNo = ‘B003’;

7-61

Example 7.6 - WITH CHECK OPTION

 UPDATE Manager3Staff

 SET salary = 9500

 WHERE staffNo = ‘SG37’;

• This update would fail: although update
would cause row to disappear from
HighSalary, row would not disappear from
LowSalary.

• However, if update tried to set salary to 8000,
update would succeed as row would no
longer be part of LowSalary.

7-62

Example 7.6 - WITH CHECK OPTION

If HighSalary had specified WITH CASCADED
CHECK OPTION, setting salary to 9500 or 8000
would be rejected because row would
disappear from HighSalary.

To prevent anomalies like this, each view
should be created using WITH CASCADED
CHECK OPTION.

7-63

Advantages of Views

Data independence
Even if the underlying source tables are changed,
the view can present a consistent, unchanging
structure of the database

Currency
Changes to any of the base tables in the defining
query are immediately reflected in the view.

Improved security
Each user can access the database only through a
small set of views that contain the data
appropriate for that user

7-64

Advantages of Views

Reduced complexity
A view can simplify queries by drawing data from
several tables into a single table, transforming
multi-table queries into single-table queries.

Convenience
Users are presented with only the part of the
database that they need to see.

Customization
Views customize the appearance of the database
so that the same underlying base tables can be
seen by different users in different ways.

7-65

Advantages of Views

Data integrity
If the WITH CHECK OPTION clause of the CREATE
VIEW statement is used, then SQL ensures that
no row that fails to satisfy the WHERE clause of
the defining query is ever added to any of the
underlying base table(s) through the view,
thereby ensuring the integrity of the view.

7-66

Disadvantages of Views

Update restriction
In some cases, a view cannot be updated.

Structure restriction
The structure of a view is determined at the time of
its creation. If columns are later added to the base
table, then these columns will not appear in the
view, unless the view is dropped and recreated.

Performance
A view defined by a complex, multi-table query
may take a long time to process, as the view
resolution must join the tables together every time
the view is accessed.

7-67

View Materialization

View resolution mechanism may be slow,
particularly if view is accessed frequently.

View materialization stores view as
temporary table when view is first queried.

Thereafter, queries based on materialized
view can be faster than recomputing view
each time.

Difficulty is maintaining the currency of view
while base tables(s) are being updated.

7-68

View Maintenance

It is the process of updating a materialized
view in response to changes to the underlying
data.

View maintenance aims to apply only those
changes necessary to keep view current.

Consider following view:
CREATE VIEW StaffPropRent(staffNo)

AS SELECT DISTINCT staffNo

 FROM PropertyForRent

 WHERE branchNo = ‘B003’ AND rent > 400;

7-69

View Materialization

If insert row into PropertyForRent with rent 400 then
view would be unchanged.

If insert row for property PG24 at branch B003 with
staffNo = SG19 and rent = 550, then row would appear
in materialized view.

If insert row for property PG54 at branch B003 with
staffNo = SG37 and rent = 450, then no new row would
need to be added to materialized view because SG37
already exists in materialized view.

If delete property PG24, row should be deleted from
materialized view.

If delete property PG54, then row for PG37 should not
be deleted (because of existing property PG21).

	Slide 1: Chapter 7
	Slide 2: Chapter 7 - Objectives
	Slide 3: Chapter 7 - Objectives
	Slide 4: SQL Identifiers
	Slide 5: SQL Scalar Data Types
	Slide 6: SQL Scalar Data Types
	Slide 7: SQL Scalar Data Types
	Slide 8: SQL Scalar Data Types
	Slide 9: SQL Scalar Data Types
	Slide 10: Integrity Enhancement Feature
	Slide 11: Integrity Enhancement Feature
	Slide 12: Integrity Enhancement Feature
	Slide 13: Integrity Enhancement Feature
	Slide 14: Entity Integrity
	Slide 15: Referential Integrity
	Slide 16: Referential Integrity
	Slide 17: Referential Integrity
	Slide 18: Referential Integrity
	Slide 19: General Constraints
	Slide 20: General Constraints
	Slide 21: Data Definition
	Slide 22: Data Definition
	Slide 23: CREATE SCHEMA
	Slide 24: DROP SCHEMA
	Slide 25: CREATE TABLE
	Slide 26: CREATE TABLE
	Slide 27: Example 7.1 - CREATE TABLE
	Slide 28: Example 7.1 - CREATE TABLE
	Slide 29: Example 7.1 - CREATE TABLE
	Slide 30: ALTER TABLE
	Slide 31: ALTER TABLE Statement Format
	Slide 32: Example 7.2(a) - ALTER TABLE
	Slide 33: Example 7.2(b) - ALTER TABLE
	Slide 34: DROP TABLE
	Slide 35: Views
	Slide 36: Views
	Slide 37: SQL - CREATE VIEW
	Slide 38: SQL - CREATE VIEW
	Slide 39: Example 7.3 - Create Horizontal View
	Slide 40: Example 7.4 - Create Vertical View
	Slide 41: Example 7.5 - Grouped and Joined Views
	Slide 42: Example 7.3 - Grouped and Joined Views
	Slide 43: SQL - DROP VIEW
	Slide 44: SQL - DROP VIEW
	Slide 45: View Resolution
	Slide 46: View Resolution
	Slide 47: View Resolution
	Slide 48: View Resolution
	Slide 49: Restrictions on Views
	Slide 50: Restrictions on Views
	Slide 51: Restrictions on Views
	Slide 52: View Updatability
	Slide 53: View Updatability
	Slide 54: View Updatability
	Slide 55: View Updatability
	Slide 56: View Updatability
	Slide 57: WITH CHECK OPTION
	Slide 58: WITH CHECK OPTION
	Slide 59: Example 7.6 - WITH CHECK OPTION
	Slide 60: Example 7.6 - WITH CHECK OPTION
	Slide 61: Example 7.6 - WITH CHECK OPTION
	Slide 62: Example 7.6 - WITH CHECK OPTION
	Slide 63: Advantages of Views
	Slide 64: Advantages of Views
	Slide 65: Advantages of Views
	Slide 66: Disadvantages of Views
	Slide 67: View Materialization
	Slide 68: View Maintenance
	Slide 69: View Materialization

